logic variables - определение. Что такое logic variables
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое logic variables - определение

SYSTEMATIC LOGICAL PROCESS CAPABLE OF DERIVING A CONCLUSION FROM HYPOTHESES
Laws of Logic; Inference rule; Rules of inference; Rules of derivation; Inference rules; Universal Variables; Law of logic; Transformation rules; Transformation rule (logic); Transformation rule; Rules of logic
Найдено результатов: 983
free variable         
  • Tree summarizing the syntax of the expression <math>\forall x\, ((\exists y\, A(x)) \vee B(z)) </math>
CLASSIFICATION OF VARIABLES IN A LOGIC FORMULA BASED ON WHETHER OR NOT THEY ARE INSIDE THE SCOPE OF A QUANTIFIER
Free variable; Bound variable; Variable binding operation; Variable-binding operation; Free variables; Bound variables; Unbound variable; Unbound variables; Variable-binding operator; Variable binding operator; Free and bound variables; Bound variable clash; Free and bound variable; Placeholder (computer programming); Free variables & bound variables; Free occurrence; Placeholder variable; Apparent variable
1. A variable referred to in a function, which is not an argument of the function. In lambda-calculus, x is a {bound variable} in the term M = x . T, and a free variable of T. We say x is bound in M and free in T. If T contains a subterm x . U then x is rebound in this term. This nested, inner binding of x is said to "shadow" the outer binding. Occurrences of x in U are free occurrences of the new x. Variables bound at the top level of a program are technically free variables within the terms to which they are bound but are often treated specially because they can be compiled as fixed addresses. Similarly, an identifier bound to a recursive function is also technically a free variable within its own body but is treated specially. A closed term is one containing no free variables. See also closure, lambda lifting, scope. 2. In logic, a variable which is not quantified (see quantifier).
Two-variable logic         
Two-variable logic with counting; Two-variable fragment
In mathematical logic and computer science, two-variable logic is the fragment of first-order logic where formulae can be written using only two different variables.L.
Mathematical logic         
SUBFIELD OF MATHEMATICS
Symbolic Logic; Symbolic logic; Mathematical Logic; Logic (mathematics); Logic (math); Logic (maths); Logic (symbolic); Mathematical logician; Logic modeling; Logic modelling; Formal Logic; History of mathematical logic; Subfields of mathematical logic; Formal logical systems; History of symbolic logic; Applications of mathematical logic; 20th century in mathematical logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory.
symbolic logic         
SUBFIELD OF MATHEMATICS
Symbolic Logic; Symbolic logic; Mathematical Logic; Logic (mathematics); Logic (math); Logic (maths); Logic (symbolic); Mathematical logician; Logic modeling; Logic modelling; Formal Logic; History of mathematical logic; Subfields of mathematical logic; Formal logical systems; History of symbolic logic; Applications of mathematical logic; 20th century in mathematical logic
¦ noun the use of symbols to denote propositions, terms, and relations in order to assist reasoning.
symbolic logic         
SUBFIELD OF MATHEMATICS
Symbolic Logic; Symbolic logic; Mathematical Logic; Logic (mathematics); Logic (math); Logic (maths); Logic (symbolic); Mathematical logician; Logic modeling; Logic modelling; Formal Logic; History of mathematical logic; Subfields of mathematical logic; Formal logical systems; History of symbolic logic; Applications of mathematical logic; 20th century in mathematical logic
<logic> The discipline that treats formal logic by means of a formalised artificial language or symbolic calculus, whose purpose is to avoid the ambiguities and logical inadequacies of natural language. (1995-12-24)
Aristotelian logic         
TYPE OF LOGIC WHOSE ELEMENTS ARE CONCEPTS
Term Logic; Traditional logic; Scholastic logic; Aristotelian logic; Aristotelean logic; Aristotlean logic; Aristotlian logic
¦ noun the traditional system of logic expounded by Aristotle and developed in the Middle Ages.
Term logic         
TYPE OF LOGIC WHOSE ELEMENTS ARE CONCEPTS
Term Logic; Traditional logic; Scholastic logic; Aristotelian logic; Aristotelean logic; Aristotlean logic; Aristotlian logic
In philosophy, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the peripatetics. It was revived after the third century CE by Porphyry's Isagoge.
bound variable         
  • Tree summarizing the syntax of the expression <math>\forall x\, ((\exists y\, A(x)) \vee B(z)) </math>
CLASSIFICATION OF VARIABLES IN A LOGIC FORMULA BASED ON WHETHER OR NOT THEY ARE INSIDE THE SCOPE OF A QUANTIFIER
Free variable; Bound variable; Variable binding operation; Variable-binding operation; Free variables; Bound variables; Unbound variable; Unbound variables; Variable-binding operator; Variable binding operator; Free and bound variables; Bound variable clash; Free and bound variable; Placeholder (computer programming); Free variables & bound variables; Free occurrence; Placeholder variable; Apparent variable
1. A bound variable or formal argument in a function definition is replaced by the actual argument when the function is applied. In the lambda abstraction x . M x is the bound variable. However, x is a free variable of the term M when M is considered on its own. M is the scope of the binding of x. 2. In logic a bound variable is a quantified variable. See quantifier.
Many-valued logic         
PROPOSITIONAL CALCULUS IN WHICH THERE ARE MORE THAN TWO TRUTH VALUES
Multiple-valued logic; Many valued logic; Multivalued logic; Polyvalued logic; Many-valued logics; Belnap logic; Many-Valued Logics; Multi-valued logics; Multi-valued logic; Multiple valued logic; Multi valued logic; Poly-valued logic; Poly valued logic; Manyvalued logic; MV logic; M-V logic; MV-logic; Polyvalent logic; Applications of many-valued logic; Bochvar logic; History of many-valued logic; Rose logic
Many-valued logic (also multi- or multiple-valued logic) refers to a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.
Dynamic logic (digital electronics)         
  • 150px
  • 200px
DESIGN METHODOLOGY IN COMBINATORIAL LOGIC CIRCUITS
Clocked logic; Static logic (digital logic); Dynamic logic (digital logic); Static logic (digital electronics)
In integrated circuit design, dynamic logic (or sometimes clocked logic) is a design methodology in combinatory logic circuits, particularly those implemented in MOS technology. It is distinguished from the so-called static logic by exploiting temporary storage of information in stray and gate capacitances.

Википедия

Rule of inference

In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.

Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the conclusion of a given set of formulae according to the rule. An example of a rule that is not effective in this sense is the infinitary ω-rule.

Popular rules of inference in propositional logic include modus ponens, modus tollens, and contraposition. First-order predicate logic uses rules of inference to deal with logical quantifiers.